DETERMINATION OF FORCE BY STIFFNESS-MATRIX FOR
3-D MODEL USED IN ROBOTIC END-EFFECTOR

ABSTRACT

In this Paper, a basic topic about force of 3-D model
is determined by stiffness-matrix. This model consists
of six legs attached with two different diameter
platforms is shown. These legs, having springs inside,
are combined with prismatic in middle and by spherical
joints in ends with platforms. The stiffnesses of these
were checked in the laboratory. Through these spring-
stiffnesses, displacement of each leg was calculated
to determine the concerned applied force. Then, these
local and global displacements were calculated
theoretically, by using Jacobian matrix and wrench
analysis. This Jacobian matrix is calculatd by
kinematics analysis. These experimental and
theoretical results are compared. Itis a new research
to determine the force of a new 3-D model.

1. INTRODUCTION

In an elastic system where a rigid body is grasped by
a compliant mechanism, the stiffness is defined as a
linear map from an infinitesimal displacement space
to the infinitesimal wrench space, in an equilibrium
condition.

Considering a stiffness kl along the ith direction of a
contact, all stiffnesses can be assembled into a
stiffness matrix [k], which contains the stiffness of
contacts in its diagonal elements. The stiffnesses can
further be mapped into the geometry of grasp, by
applying the congruence transformation used to form
a grasp stiffness matrix [1].

A preload can be applied in two different ways. The
first will be applied parallel to the contact-normal Such
preload not only affects the contact-force at each
contact-normal, but also lends itself directly to
supposition of forces [2-4] The second will be used to
apply a preload through the contact normals.

The contact stiffness is the key in this study. The study
of stiffness in the domain of screw-theory can be dated
back to 1965, when a stiffness-matrix was introduced
by Dimentberg [5] for static and dynamic loading
conditions. The stiffness and compliance were further
analyzed by Loncaric [6] with the help of linear algebra.
Further, a contact model with preloaded springs was
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introduced and used for both frictionless and frictional-
grasp analysis and synthesis [2-4].

Meanwhile, a loaded three-line spring, system for
synthesis of stiffness was proposed [1], wherein it was
demonstrated that general spatial stiffness can be
modeled with Stewart platform-type parallel
mechanism, consisting of passive line springs.

2. METHODOLOGY

A 3-D model possesses six legs, consisting of two
parts, 1-male and 2-female (In which springs are
inserted) which are combined by prismatic joints in
middle and spherical joints with two different diameter
platforms as shown in Figure-1. The local
displacements are noted in Table-1. Then stiffnesses
of these springs were checked as in Table-2 on basis
of these displacements. In Table-3, Global
displacements are observed by central load.

2.1 Stiffness-Matrix

Stiffness is the property of material, through which its
strength can be analyzed on application of force. Here
we would calculate the stiffness of the spring. This
stiffness is determined through displacement in
compression on applying various forces
Mathematically:

F=K.od
Or = F/od, where
K = Stiffness of Spring
F = Force

0d; to 0dg =displcements in compression
f, to fg =Local forces

0D = Global displacement

k,to kg = Stiffneses

In Matrix form

[f1] [k 0 0 0 0 0 ][adl]
f2| [0 k2 0 0 0 0| ad2
f3] [0 0 k3 0 0 0]/od3
fa| [0 0 0 k4 0 0| od4
fs5| [0 0 0 0 k5 0|/ads
f6] [0 0o 0 0 o0 k6| ods]
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Table - 1: Spring Deflection Under Application of Force

S. | Load Local Displacement (3d) in compression forlegs in mm
NO|(F) In 8d1 3d2 3d3 3d4 3d5 3d6
N odi |5df| Av | &di| 8df | Av | &di | 5df | Av | &di | 5df | Av | &di | 3df | Av |5di| 5df | Av
1 19.81 ]0.95|1.2(1.075|0.75|1.10]0.925|0.85|1.01{0.926 |{1.0 |1.15({1.075|1.02 {1.20 1.1 |1.0|1.20{1.10
2 |2.943 |1.50|2.0|1.75 |1.70|2.01 (1.85 (1.80|2.0 |1.90 ([1.75]|2.10|1.925|1.80|2.10|1.95 (1.9 2.10|2.0
3 |4.905 |3.0 |3.0/3.0 |2.8 |2.8 (2.8 (2.90|2.90|2.90 (3.1 |3.10|3.10 |3.10(3.10|3.10 (3.0(3.0 |3.0
Table-2: Stiffness of Spring Based upon Above Readings
S. Stiffness of Spring (K = F &d) for each leg in Average Stiffness (Kav) in Newton (N)
No. N/mm
K1 K2 K3 K4 K5 K6 Kav1 Kav2 Kava Kav4 Kav5 Kav6
1 0.9126 | 1.0605 | 1.0606 | 0.9126 | 0.8926 | 0.8920 | 1.4098 | 1.4677 | 1.4336 | 1.3412 | 1.3278 | 1.3328
2 1.6816 | 1.5908 | 1.5489 | 1.5288 | 1.5092 | 1.4727
3 1.6349 | 1.7513 | 1.6913 | 1.5823 | 1.5823 | 1.6351
Total | 4.2291 | 4.4031 | 4.3008 | 4.0236 | 3.9834 | 3.9932
Table-3: Global Displacements
Gen; Load Local Displacement in compression for legs in mm (3d)
Kept centrally 3d1 5d2 5d3 5d4 3d5 5d6
W) 5di| odf | dif |5di| odf | dif |5di| odf | dif |5di| odf | dif |odi| odf | dif |odi| odf | dif
-9.81N 8.0]-9.5(-1.516.9|-84 |-15|7.0|-8.3|-1.3|7.8|-9.2 |-1.4|7.0(-8.3 |-1.3(9.0 |-10.2 |-1.2

3. RESULTS AND DISCUSSION:

Here we discuss the results of the practical and
kinematics analysis performed in the previous
section. Here Jacobian is achieved by kinematics
analysis. The local displacement is gained by
individual leg, while global is taken centrally as
reference. There are bound to be some errors and
differences in the theoretical and practical values.
This may be due to incorrect instrument and friction
play in the designed model. The reasons for
justification of errors have been discussed in the
following sections.

3.1 Investigation of Stiffness Mappings

Stiffness mapping can be achieved with the
following two different steps.

a) Experimental Setup

The model consists of springs in its six legs. Every
spring was tested in the laboratory for determining
its stiffness. These springs are used for
compression force, when the force is applied on
each leg of the model, it gives different values of
displacements along each of six legs of the model.
However, three different readings were noted by
application of different loads on each spring for the
stiffness. This has been given in Table-1. Therefrom
the average stiffness value of each leg was
calculated. These stiffnesses were set along the
diagonal of a 6 matrix as shown in Table-2.

Similarly, applying the load to the designed model
will produce displacements in each leg. The
relationship of the resulting displacement canbe
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Since we know that F=[K}.0od,
i-e ow=1J,[k].J".oD,

where
Fx
Fy 0
Fz | |-9.81 , s )
ow = Mx |~ and 'J;.[k].J"." is called congruence transformation denoted by (K,)
My 0
Mz 0
0 0.4330 0.0000 -0.5000 -0.4330 -0.0000 0.5000 {{1.4098 O 0 0
0 0.2500 0.5000 0.0000 -0.2500 -0.5000 -0.0000 0 1.4677 0 0
-9.81| | 0.8660 0.8660 0.8660 0.8660 0.8660 0.8660 0 0 1433 0
0 | |-48.118 -96.237 -48.118 48.118 96.2371 48.118| 0 0 0 3.6021
0 83.343 0 -83.343 -83.343 0 83.343 0 0 0 0 13278 0
0 0.0000 0.0000 -27.781 0.0000 0.0000 -27.781 0 0 0 0
[ 0.4330 0.2500 0.8660 -48.1185 83.3438 0.0000 oDy,
0.0000 0.5000 0.8660 -96.2371 0 0.0000 0Dy,
-0.5000 0.0000 0.8660 -48.1185 -83.3438 -27.781|| ADy,
-0.4330 -0.2500 0.8660 48.1185 -83.3438 0.0000 || 6D,
-0.0000 -0.5000 0.8660 96.2371 O 0.0000 0Dy
| 0.5000 -0.0000 0.8660 48.1185 83.3438 -27.781 || dD,
o 0.0002 0.0001 -0.0001 -0.0038 0.0296 0.0001 || D,
0 0.0001 0.0001 -0.0000 -0.0195 0.0104 -0.0000 || oD,
-9.81 1,06 + 004 x -0.0001 -0.0000 0.0008 0.0075 -0.0166 -0.0067 ‘ 0Dy,
-0.0038 -0.0195 0.0075 4.3900 -0.9006 0.0135|| oD,
0.0296 0.0104 -0.0166 -0.9006 5.4029 0.0233|| dD,s
L 0.0001 -0.0000 -0.0067 0.0135 0.0233 0.2135 || D
_6Dgl_ 0.0002 0.0001 -0.0001 -0.0038 0.0296 0.0001]°[ ©
Dy, 0.0001 0.0001 -0.0000 -0.0195 0.0104 -0.0000 0
0D 106 +004x -0.0001 -0.0000 0.0008 0.0075 -0.0166 -0.0067| |-9.81
oD, -0.0038 -0.0195 0.0075 4.3900 -0.9006 0.0135 0
0Dgys 0.0296 0.0104 -0.0166 -0.9006 5.4029 0.0233 0
| Dy | 0.0001 -0.0000 -0.0067 0.0135 0.0233 0.2135 0
(oD, | [-0.6131
oDy, | | 3.3722
ODgs | _| -1.9119 But we also know from above equation that od, =[J7].6D
oD, 0.0165 9
0Dy -0.0048
|0Dys | | -0.0596
[od,, 0.4330 0.2500 0.8660 -48.1185 83.3438 0.0000 ||{-0.6131| |[-2.2697
od,, 0.0000 0.5000 0.8660 -96.2371 O 0.0000 3.0656 -1.5543
od,, _ -0.5000 0.0000 0.8660 -48.1185 -83.3438 -27.7812|-1.9119 _ -0.0865
od,, | |-0.4330 -0.2500 0.8660 48.1185 -83.3438 0.0000 || 0.0251| |-1.0418
od,s -0.0000 -0.5000 0.8660 96.2371 O 0.0000 ||-0.0144| |-1.7572
| 0d,6 0.5000 -0.0000 0.8660 48.1185 83.3438 -27.7812 ||-0.0948 0.0865

or J,xF =J, x[K}.ad,

0
0
0

o o o

0 0

0 1.3328

mm
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From above calculations we get following equation to solve

F=K.ad,

[F1] [1.4098 0 0 0 0 0 | [-2.2697]
F2 0 1.4677 0 0 0 0 -1.5543
F3 0 0 1.4335 0 0 0 -0.0865
Fal | o 0 0 3.6021 O 0 | |-1.0418
F5 0 0 0 0 1.3278 0 -1.7572
F6] | 0 0 0 0 0 1.3328] | 0.0865
[F1] [-3.1998]

F2| |-2.2812

F3| |-0.1240 N

F4| |-3.7527

F5| |-2.3332

|F6| | 0.1153]

These values of the forces are calculated based upon theoretically local displacements through
coordinate system.

Also Similiarily putting the experimental values of local displacements in equation [F]=[K].[cd]

[F1] [1.4098 0 0 0 0 0 [-1.5]
F2 0 1.4677 0 0 0 0 -1.5
F3 0 0 1.4335 0 0 0 -1.3
Fal | o 0 0 3.6021 0 0 |'|-1.4
F5 0 0 0 0 1.3278 0 -1.3
[F6] | © 0 0 0 0 13328 |-1.2]
[F1] [-2.1146]

F2| |-2.2016

F3| |-1.8636 N

F4| |-5.0430

F5| |-1.7261

F6| | -1.5993]

'Negative Sign' in force shows that direction of applied force is downward. The values of the forces
were calculated, based upon practically local displacements.
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Figure - 1: Elevation View of Proposed 3-D Model

interpreted into global coordinates, using the
relationship.

D, = [l.q,

As we apply the wrench ‘W', it gives d and then,
using transformation relationship,

W=K D
9 g

b) Theoretical analysis

Any wrench-vector in its space under the mapping
is a linear combination of these six wrench-
vectors. Once the wrench-space is completely
defined, the stiffness matrix for the mapping can
be specified.

Since we know that
F = [K].d,

multiplying both sides by [J] we get
[]. F =[J]. [K].d,

or W = [J]. [K].d,

But d=1[J].D
Hence W = [J]. [K]. [J‘].Dg

These equations are used in the above section of
methodology. Where D and d are global and local
displacements, while [K], [J] and W are stiffness
matrix, Jacobian matrix and wrench analysis
respectively. The D or d then can be compared
with that practically obtained.

4. CONCLUSION

These determined stiffnesses were used for practical
and theoretical analysis. For practically stiffness
mapping, it gives the required local displacements
depending on its applied loads.

For theoretical purposes, when same stiffness-
mapping is applied for determining the local
displacements through Jacobian and congruence
transformation, it gives different local displacements.
There are a no of reasons for the un-matching results,
which are given below:
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a. Design of Model: The model has not been
designed with sophisticated machines, rather is
manufactured at workshop level. The aim was concept
approval. It has a number of joints, which have a lot of
play. These plays affect the readings along the each
leg and are a major source of error. It can be eliminated
by careful and accurate fabrication.

b. Measurement of Parameters: The
displacement along each leg is measured through the
readings on the scale drawn on each leg. Again, it is
not of high resolution. The thickness of the lines, the
least count and parallaxes are the major sources of
errors. These can be improved by incorporating the
digital kind of instrumentation.

c. Application of load: The load has been
considered to be applied along the global axes of the
model, which are along the center of the bottom plate.
Specifically, it has been applied along z-axis, placing
upon upper plate. Ideally and theoretically, it should
be in the center and parallel to global z-axis.
Placement of the center is associated with some
errors, as it was approximate one. A better
arrangement, scale marking, and small loads would
have increased the accuracy of the results.
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