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ABSTRACT

This paper studies the flows of a generalized third-
grade fluid bounded by a plate(s). The fluid is
electrically conducting, and Hall effects are taken into
consideration. The governing non-linear partial
differential equation is solved using Series and Fourier-
transform methods. The effect of the variation in the
material parameter and the magnetic field on the
velocity field is discussed.
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INTRODUCTION

In an ionized gas, where the density is low and/or the
magnetic field is very strong, the conductivity normal
to the magnetic field is reduced due to the free spiraling
of electrons and ions about the magnetic lines of force
before suffering collisions; also, a current is induced
in a direction normal to both the electric and magnetic
fields. The phenomenon, well known in the literature,
is called the Hall effect [11]. The study of
magnetohydrodynamic flows with Hall currents has
important engineering applications, particularly in the
case of magnetohydrodynamic generators and of Hall
accelerators, as well as in flight
magnetohydrodynamics. The magnetohydrodynamic
flow of a non-Newtonian fluid is of great importance in
industrial and technological applications.

In recent years, fractional calculus has encountered
much success in the description of complex
dynamics. Fractional derivative models are used quite
often to describe viscoelastic behavior of polymers in
the glass-transition and the glassy state. The starting
point is usually the classical differential equation, which
is modified by replacing the classical, time-derivatives
of an integer-order, by the so-called left-hand Liouville,
or the Riemann-Liouville differential integral operators.

This generalization allows one to precisely define non-
integer order integer or derivatives [1, 2]. Fractional
derivative constitutive equations have been found to

be quite flexible, in describing linear-viscoelastic
behavior of polymers from glass-transition to the main
or α relaxation in the glassy state. Recently, fractional
calculus has encountered much success in the
description of viscoelasticity [3, 4]. More recently, Tan
and Xu [5] discussed the generalized second-grade
flow, due to the impulsive motion of a flat plate. The
second-grade fluid for a steady flow does not exhibit
the property of shear thinning or thickening. For this
reason, some experiments may be well described by
the fluids of grade three or four [6, 7]. The model in the
present paper is the generalized third-grade one.

The purpose of this work is to study the boundary-
value problem, governing uni-directional unsteady flow,
involving generalized third-grade fluid, with a view to
emphasize the differences between the unsteady flow
of a generalized third-grade fluid and the corresponding
flow of a third-grade fluid, due to an oscillating flat plate
The fractional calculus approach has been taken into
account in the constitutive relationship of fluid model.
By using the Fourier-transform of the sequential
fractional derivatives, we obtain the solution for the
flow.

FLOW EQUATIONS

The MHD equations governing the steady flow of an
incompressible fluid are:

where ρ is the density, J is the current density, B is
the total magnetic field, µm the magnetic permeability,
E the total electric field-current and σ the electrical
conductivity of the fluid. Making reference to Cowling
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[9], when the strength of the magnetic field is very
large, the generalized Ohm’s law is modified to include
the Hall-current, so that:

where ϖe is the cyclotron frequency of electrons, τe is
the electron’s collision-time, σ is the electrical
conductivity, e is the electron-charge and pe is the

electron-pressure. The ion-slip and thermoelectric
effects are not included in (4). Further, it is assumed
that ϖe ∼  o(1) and ϖiτ i <<1, where ϖi and τ i are the
cyclotron-frequency and collision-time for ions,
respectively.

The constitutive equation for the Cauchy stress-tensor
of third-grade fluid is [12]:

where V is the velocity-field, grad is the gradient-
operator,  the transpose and d/dt is the material time
derivative. A detailed thermodynamic analysis of the
model, represented by Eq. (5) is given by Fosdick
and Rajagopal [6]. They showed that if all the motions
of the fluid are to be compatible with thermodynamics,
in the sense that these motions meet the Clausius-
Duhem inequality, and if it is assumed that the specific
Helmholtz free energy is a minimum when the fluid is
locally at rest, then:

and Eq. 5 for a thermodynamically compatible fluid of
third-grade becomes

For generalized third-grade fluids, the constitutive
relation is Eq. 9, but An is defined as follows [3, 4, 5,
8]:

where Dβ
τ is Riemann-Liouville fractional calculus

operator and is defined by [8].

where Γ (• )is the Gamma function,  Dβ
τ denotes the

material time-differentiation of fractional order. It is
remarked that Eq. (10) includes Eq. (7) as a special
case for β=1 and for β=0, α1= 0 and β3=0, we get the
constitutive relationship for viscous fluid.

where u and i are the velocity and unit vector in the
direction of x-coordinate.

On using Eq. (12), Eq. of continuity (2) is identically
satisfied and the momentum equation (1), with the
help of (4), in the absence of pressure-gradient, yields

In Eq. 5, µ is the dynamic viscosity, α1,α 2, β1,β2, and β3 are the material constant and the kinematic tensors A1,
A2 and A3 are given as follows:
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Figure - 1: Geometry of the Problem

where

where φ =ϖeτe is the Hall-parameter. The appropriate
boundary conditions are:

where U is the reference velocity and ϖ is the
oscillating-frequency.

SOLUTION OF THE PROBLEM

For solution of the problem, we write [10]:

in Eq. (13) and conditions (15) and, then equating
like powers of ε, we obtain the following systems:

System of O(εο)

System of O(ε)
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We solve the above systems by Fourier-transform
method. For that we define the Fourier-transform as
follows:

in which w is the temporal frequency. The Fourier-
transform of the fractional derivative Dβ

t is defined as:

where

With the help of Eq. (19a), the transformed problem
takes the following forms

where

Solving Eq. (21) with conditions (21a) and (21b), then
using Eq. (19a) were arrive at a result:

where

To obtain the first-order solution, we substitute the
zeroth order solution in (18) we get:

The Eq. (24) and conditions (18a,b) after using Eq.
(19a) become:

where:

The solution of Eq. (25) satisfying the conditions (25a)
and (25b) is of the following form

The inverse Fourier transform of above equation gives:

in which
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CONCLUSIONS

The fractional calculus approach in the constitutive
relationship model of a generalized third-grade fluid
is taken into account. Unsteady uni-directional flow
of the third-grade fluid with fractional derivative model
is constructed. Using the Fourier-transform of the
sequential fractional derivative, we obtain the
perturbation solutions of the velocity-field. It is found
that, in case of steady flow, the results for third-grade
and generalized third-grade fluids are identical. The
present analysis is more useful than the ordinary third-
grade model for describing the properties of third-grade
fluid.
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